Discrete Poincaré lemma

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Poincaré Lemma in Subriemannian Geometry

This work is a short, self-contained introduction to subriemannian geometry with special emphasis on Chow’s Theorem. As an application, a regularity result for the the Poincaré Lemma is presented. At the beginning, the definitions of a subriemannian geometry, horizontal vectorfields and horizontal curves are given. Then the question arises: Can any two points be connected by a horizontal curve?...

متن کامل

A Discrete Farkas Lemma

Given A ∈ Zm×n and b ∈ Zm, we consider the issue of existence of a nonnegative integral solution x ∈ Nn to the system of linear equations Ax = b. We provide a discrete and explicit analogue of the celebrated Farkas lemma for linear systems in Rn and prove that checking existence of integral solutions reduces to solving an explicit linear programming problem of fixed dimension, known in advance.

متن کامل

Poincaré ’ S Lemma on Some Non - Euclidean Structures

In this paper we prove the Poincaré lemma on some n-dimensional corank 1 sub-Riemannian structures, formulating the (n−1)n(n +3n−2) 8 necessarily and sufficiently ’curl-vanishing’ compatibility conditions. In particular, this result solves partially an open problem formulated by Calin and Chang. Our proof is based on a Poincaré lemma stated on Riemannian manifolds and a suitable Cesàro-Volterra...

متن کامل

Discrete Poincaré lemma

This paper proves a discrete analogue of the Poincaré lemma in the context of a discrete exterior calculus based on simplicial cochains. The proof requires the construction of a generalized cone operator, p :Ck(K)→ Ck+1(K), as the geometric cone of a simplex cannot, in general, be interpreted as a chain in the simplicial complex. The corresponding cocone operator H :Ck(K)→ Ck−1(K) can be shown ...

متن کامل

Discrete Sobolev-Poincaré Inequalities for Voronoi Finite Volume Approximations

We prove a discrete Sobolev-Poincaré inequality for functions with arbitrary boundary values on Voronoi finite volume meshes. We use Sobolev’s integral representation and estimate weakly singular integrals in the context of finite volumes. We establish the result for star shaped polyhedral domains and generalize it to the finite union of overlapping star shaped domains. In the appendix we prove...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Numerical Mathematics

سال: 2005

ISSN: 0168-9274

DOI: 10.1016/j.apnum.2004.09.035